I. Question (4 points)

Un plongeur est équilibré, en surface (poids réel = poussée Archimède).

- 1) Comment évoluera sa flottabilité à 40mètres ? (justifiez) (0,5point) Flottabilité négative car poids réel > poussée Archimède
- 2) Donnez un exemple expliquant cette variation de flottabilité ? (0,5point)
 - Diminution du volume de la combinaison dû à la profondeur
 - Diminution des volumes déformables du corps (intestins, ventre diminution du tour de taille 1 ou 2 crans de ceinture)
- 3) Ce plongeur introduit 6litres dans son SGS à 40mètres pour se rééquilibrer. Quel volume d'air le plongeur aura-t-il dans son gilet à 20mètres, 10mètres (sans action sur gilet) ? (1 point) $P \times V = P1 \times V1$

 $20m : (6 \times 5) / 3 = 10 I$ $10m : (6 \times 5) / 2 = 15I$

4) Pourquoi purge-t-on le(s) gilet(s) durant une assistance avec SGS? (2points)
Régulation de l'augmentation de volume des bouées (due à la diminution de pression) qui influencera la poussée Archimède et modifiera ainsi la vitesse de remontée.

Les termes à retrouver dans la réponse sont poussée Archimède, volume et vitesse.

II. Question (6 points)

Pendant leur exploration, des plongeurs trouvent à 30 m un bloc en plomb, de 2 dm de large sur 3 dm de long et 1,5 dm de haut. Soucieux de l'environnement, ils décident de remonter ce bloc à l'aide d'un des deux parachutes en leur possession.

Rappels: densité du plomb : 11,3

 $1 dm^3 = 1 I$

Simplification: densité eau de mer \approx 1

1) Quelle quantité d'air devront-ils mettre dans le parachute pour obtenir une flottabilité nulle du bloc de plomb ? (2 points)

Calcul du volume du bloc : $2 \times 3 \times 1,5 = 9 \text{ dm}^3 = 9 \text{ l}$ Calcul de la masse du bloc : $9 \times 11,3 = 101,7 \text{ kg}$

Calcul du poids apparent : $P_{app} = P_{r\acute{e}el} - P_{Archimède} = 101,7 - 9 \times 1 = 101,7 - 9 = 92,7 kg$

On veut $P_{app} = 0$ donc $P_{Archimède} = 92.7$ kg

Pour obtenir une flottabilité nulle du bloc de plomb, ils devront donc injecter un volume d'air de 92,7 l à 30 m

- 2) A quelle quantité d'air équivalent surface cela correspond-il ? (1 point) $92.7 \times 4 = 370.8$ L d'air détendu
- 3) Avec une bouteille de 15 l, de combien de bars ce gonflage va-t-il faire baisser le manomètre ? (1 point)

 $P1 \times V1 = P2 \times V2$ donc $15 \times P1 = 92,7 \times 4$ $P1 = 92,7 \times 4$

$$P1 = \frac{92.7 \times 4}{15} = 24.72 \text{ bars}$$

La pression dans le bloc va chuter de 24,72 bars.

4) Le lendemain, ces plongeurs décident de retourner sur le site visité la veille. A leur arrivée, ils sont interpellés par un plaisancier qui vient de perdre son moteur de secours (masse de 82 kg et volume de 50 dm³ environ). Les plongeurs lui proposent de le lui remonter. Ils le découvrent sur un fond de 30m.

Si l'un d'entre eux introduit 30 l dans son parachute de 100 l, à quelle profondeur le moteur sera-t-il à l'équilibre, permettant alors au plongeur de cesser de palmer ? (2 points)

Calcul de la poussée d'Archimède à 30 m : $P_{Archimède} = (30 + 50) \times 1 = 80 \text{ kg}$

Calcul du poids apparent : P_{app} = P_{réel} — P_{Archimède} = 82 — 80 = 2 kg

On veut l'équilibre, soit :

$$P1 \times V1 = P2 \times V2$$

$$4 \times 30 = P2 \times 32$$

 $P2 = \frac{4 \times 30}{32} = 3,75$ bars soit une profondeur de 27,50 m environ.

On pourra lâcher l'ensemble dès que l'on sera remonté de quelques centimètres.

III. Question (6 points)

Un plongeur préparant le niveau guide de palanquée a de grande difficulté à maitriser sa remontée au gilet. Il a un poids de 70kg, son matériel pèse 4kg et il a 7kg à la ceinture.

 A 30m, il a un volume de 70 litres. Combien d'air doit-il injecter dans son gilet pour être équilibré à 30m et quelle quantité d'air ramenée à 1 bar doit-il purger pendant sa remontée ? (2 points)

Calculons le poids apparent du plongeur à 30m :

Papp = P - Vd

Papp = $(70 + 4 + 7) - 70 \times 1$

Papp = 11 kg

Pour obtenir un poids apparent nul, le plongeur doit injecter 11 litres dans son gilet

Il a 11 litres dans son gilet à 30 m. il doit donc purger 11 litres à 4 b soit 44 litres à 1 b

Pression (bas)	4	1
Volume d'air (litre)	11	44

2) Son moniteur remarque qu'il injecte de l'air dans son gilet pour se maintenir en surface. Estce normal ? Justifier (1 point)

Non, un plongeur équilibré à 3m, doit être en flottabilité légèrement positive en surface du fait de la légère dilatation de l'air contenu dans la combinaison.

3) Calculer son juste lestage si son volume est de 76 litres à 3m (1 point)

Calculons le poids apparent du plongeur à 3m sans lestage :

Papp = P - Vd

Papp = $(70 + 4) - 76 \times 1$

Papp = 2 kg

Pour obtenir un poids apparent nul à 3 m, le plongeur doit se lester avec 2 kg

4) Refaite les calculs de 1) avec ce nouveau lestage (1 point)

Calculons le poids apparent du plongeur à 30m :

Papp = P - Vd

Papp = $(70 + 4 + 2) - 70 \times 1$

Papp = 6 kg

Pour obtenir un poids apparent nul, le plongeur doit injecter 6 litres dans son gilet

Il a 6 litres dans son gilet à 30 m. il doit donc purger 6 litres à 4 b soit 24 litres à 1 b

Pression (bas)	4	1
Volume d'air (litre)	6	24

5) Qu'en déduisez-vous ? (1point)

Le plongeur devrait avoir moins de difficultés à gérer sa remontée car il a beaucoup moins d'air à purger durant celle-ci

IV. Question (4 points)

Pierre et Jean découvrent une ancre immergée sur un fond à 40 m et décident de la remonte à l'aide d'un parachute et d'un treuil.

Pour cela ils disposent d'un parachute de relevage d'un volume de 150 I qu'ils gonflent pour atteindre le volume de 60 I.

L'ancre a une masse de 150 kg pour un volume de 30 dm3.

1) Quel est le poids apparent de l'ensemble ancre + parachute (2 points)

Donnée : Densité de l'eau 1

Le volume « mort » du parachute est considéré négligeable

Poids apparent de l'ancre (sans parachute) 150kg –(30x 1)= 150 – 30 =120 kg

Poussée du au parachute : 60l x 1 = 60 kg Poids apparent de l'ensemble 120kg – 60kg = 60 kg

2) A quelle profondeur il n'y aura-t-il plus besoin du treuil pour faire remonter l'ancre ? (2 points)

Le treuil ne sera plus nécessaire quand la poussée due au parachute sera égale au poids apparent de l'ancre.

60 l à 5 b = 120 l à ? ? =60/120*5 = 2,5 b soit 15m